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Abstract— Microwave diathermy is used for thermal
rehabilitation to inhibit the early stages of osteoarthritis (OA).
Thermal therapy focusing on the deep joint tissue effectively
prevents cartilage degradation. However, our previous
experimental results using agar phantoms show that microwave
diathermy heat penetration depth is less than 20mm, which is
not enough to heat the deep tissue for effective treatment of OA.

In this study, we evaluated the performance of a microwave
diathermy system no different than those used in clinics. To
evaluate the system’s performance, we compared temperature
increase distributions of our experimental results and our
simulated results calculated by the finite element method (FEM).

First of all, we developed a method using ultrasound (US)
imaging techniques to calculate temperature increase
distributions inside the human body. To carry out this new
method, we understood that the US imaging probe needed to be
precisely positioned in order to compare the ultrasound images
taken before and after the heating treatments. Because of this,
we developed a robotic arm guided imaging system for our
experiments.

Second, we simulated temperature distributions inside the
knee using FEM. In order to do this, we utilized a 3D anatomical
human knee model reconstructed from MRI images.

Third, we compared and discussed our experimental results
and simulation results.

Our findings confirmed that the microwave diathermy system
was not able to heat the deep knee tissue. Furthermore, it can be
suggested that our robotic arm guided ultrasound system
effectively evaluated temperature increase distributions inside
the human body during microwave diathermy treatment.

Index Terms— Microwave diathermy, Ultrasound
imaging, Robotic arm, Temperature increase
distributions, Finite Element Method (FEM).
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Fig. 1. Illustration of the microwave diathermy treatment setup

I. INTRODUCTION

Microwave diathermy systems are widely used for treating
musculoskeletal disorders in clinics. An illustration of this
treatment is shown in Fig. 1. This method is one type of
thermal rehabilitation to inhibit osteoarthritis (OA)
progression in the early stages [1]-[3].

Microwave diathermy systems are typically set at 2.45 GHz.
Because of the wavelength, it is not efficient to heat the deep
tissue by using this method. In our previous work, we
experimented with some agar phantoms using a microwave
diathermy system set at clinical conditions [4]-[10]. Our
previous findings showed that this heating system was able to
effectively heat less than 20 mm deep into the body [9], [10].

In this study, we experimented on the knee of a healthy
male subject. To evaluate the heating treatment’s
effectiveness, we needed to develop a non-invasive
temperature  distribution calculation system. In other
researchers’ work, temperature measurement systems using
CT or MRI data were developed; however, these methods
have a prohibitive cost and take up too much space[11]-[15].
Furthermore, the temperature sensitivity of these methods is
around 5°C. To overcome the shortcomings of CT and MRI
measurement systems, we developed a new method using
ultrasound imaging techniques to calculate temperature
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increase distributions inside the human body[16]-[18]. We
believe our measurement system was easier to use, more
economical, and more precise than CT and MRI systems. The
basis of this method was already tested in our previous works
[18], and we found that this system’s algorithm was able to
effectively calculate temperature distributions inside the
human body.

In our previous study, we had to manually adjust the
ultrasound probe’s position; however, we noticed that the
most important parameters for correct temperature
distribution measurement are the precise 3D positioning and
angle of the probe. Therefore, in this study, we developed a
new non-invasive temperature measurement system guided
by a robotic arm, shown in Fig. 2. In our new temperature
measurement system, ultrasound images taken before and
after heating are input into our in-house image processing
software program which then outputs the displacement data.

To evaluate our new ultrasound measurement system, we
performed heating experiments using microwave diathermy,
and we measured the resulting temperature distribution inside
the human subject’s knee. We compared these results with the
calculated results by FEM (Finite Element Method) using a
3D anatomical human knee model.

II. METHODS

A. Temperature measurement system using ultrasound
imaging

It is known that acoustic velocity depends on the
temperature of the medium. Ultrasound imaging devices
reconstruct images using a specific velocity, so ultrasound
images taken before thermotherapy will differ from
ultrasound images taken after because of changes in tissue
temperature [19]-[22]. We can calculate the temperature
distribution inside the human body by the following
equations:

AT(x) = klj:-issue T

Ketsrue = =5 @
Here, T is the tissue temperature, Ad is the displacement
between the ultrasound images taken before and after heating,
kiissue 1S the heat coefficient of each tissue, o is the coefficient
of thermal expansion of each tissue, and B is the ultrasound
speed factor, which changes depending on the tissue
temperature. In this study, we calibrated “ky.” after the
experiment.
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Figure 3 shows a flow chart of our temperature
measurement method using ultrasound images. The basic
performance of this proposed method has been evaluated in
our previous studies, and we found that it worked effectively.
[17], [18].

First, we took an ultrasound image (labeled Img. 1). Next,
we carry out the heating treatment. In heating experiments, we
heated a human knee with a microwave diathermy system by
100W in 10 minutes, which is the same heating condition in
clinics. After that, we took another ultrasound image in the
exact same position where Img. 1 was taken (labeled Img. 2).
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Fig. 2. Robotic arm-guided temperature measurement system.
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Fig. 3. Flowchart of temperature measurement using ultrasound images.

Fig. 4. Leg brace for assisting in ultrasound imaging.

During this crucial step, the ultrasound imaging probe must be
precisely positioned in order to properly compare the images
taken before and after the heating treatments. Finally, we
calculated the displacement distribution between Img. 1 and
Img. 2.

B. Properties of the leg brace and the robotic arm

For this research study, we took ultrasound images of the
left knee of one of the co-authors of this study, keeping in
mind that the knee joint is difficult to hold in a stable position
on its own. Fig. 4 shows a leg brace that was custom-made by
a prosthetist for the human subject. With this leg brace, the
human subject’s leg can be stabilized for taking precise
ultrasound images before and after heating.

In this study, we developed robotic arm which guides the
ultrasound probe in our measurement system shown in Fig. 5.
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It has 7 independent axes, and its maximum payload is 1500g
at full reach. This robotic arm can be controlled by the C++
programming language. In this study, we programmed a
function which stores the robotic arm’s initial 3D position and
angle in memory and thus allows it to return to the initial
position at any time. Using this function, we are able to take
ultrasound images before and after heating as smoothly and
actually as possible.

C. FEM calculation model

The FEM calculation model using microwave diathermy
is shown in Fig. 6. This anatomical human knee model was
reconstructed from MRI images. There are 1,691,945
elements and 287,384 nodes. The microwave frequency
radiating from the antenna is set at 2.45GHz. This model is Fig. 5. Developed robotic arm with 3D position memory function.
surrounded 1m? of space to be used as the calculation area.

The temperature distribution inside a heated object can be

calculated by the following equations, (3)-(8): Applicator ($180)
VZE+Kk?E=0 (3) Antenna ($140)
k? = w?ep ) ,
_1 2 Patell x
Wy = olE?| (5) | ner,[ —_— :
‘a EF 1
1, e
SAR = —Wj, (6) \
8T _ . . _ Femur
s e VE-Wp-saR =Ny (7) ,,. cartilage
We = (Fpliissue " (POblood " (T—Tp)  (8) " Tibia
Fibula [mm]
Here, E is the electric field vector, o the radial frequency, € Fig. 6. Finite element model of the microwave diathermy system.
the dielectric constant, 4 the magnetic permeability, W), the
heat energy generated inside a human body, o the electrical
conductivity, p the volume density of tissue, ¢ the specific
heat of tissue, xthe thermal conductivity, T the temperature of Table I Electromagnetic propertics of tissue at 2.45GHz.
tissues, t the heating time, Wc the cooliI}g energy by blood Electric conductivity | Relative Demsity Ikefed?
flow, and F the blood flow rate of each tissue. Equations (3) [S/m] permittivity | Density [ke/m’]

and (4) can be solved numerically by FEM [6]-[8]. Using the Muscle 17388 52779 1000

resulting data of SAR distributions inside a human body, the
tissue temperature (7) can be calculated by equation (7). The Bone 0.39431 11.381 1790

electrical parameter values at 2.45GHz for each tissue are

. . . , Cartilage 1.7559 38.77 1200

listed in Table I [23]-[26]. Thermal properties of each tissue

are listed in Table II [27]-[31]. Fat 0.10452 5.2801 900
Air 0.00 1.00 1.165

III. RESULTS AND DISCUSSION

Fig. 7 shows the ultrasound images and estimated

. .. ... .. Table II. Thermal properties of tissue.
temperature increase distribution inside of a human knee joint. prop

In Fig. 7, (a) and (b) show the ultrasound images before and Tissue c K F (Blood flow rate)

after the heating experiment. Using these ultrasound images, [J/kg/K] [W/m/K] [ml/min/gm]

temperature increase distribution shown in Fig. 7(c) was

. . . Muscle 1.7388 52.729 0.027
estimated. In this study, we estimated the temperature

increase distribution of the deep knee tissue (aiming to the Bone 2700 0.22 0.1

cartilage). From these results, these images of the cartilage

. X Cartilage 1.7559 0.35 0.1
and deeper region of the knee showed no differences. £
However, the hollow bone region showed some differences Fat 3920 0.24 0.21
because of the temperature increase. From this estimated Air 1010 0.025 i

temperature distribution, it was found that the proposed

measurement system was effective in estimating the
temperature distribution inside the human tissue.
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Fig. 7. Ultrasound knee images and calculated temperature distribution.
(a) Before heating, (b) After heating,

(c) Estimated temperature increase distribution
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Fig. 8 Simulated temperature distribution by FEM.
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Fig. 9 Enlargement view of temperature increase distributions

(a) Estimated from the ultrasound image, (b) FEM simulated result.

Furthermore, from this experiment it was found that the
positioning differences of the probe between before and after
the heating was within 0.2 mm by supporting with developed
robotic arm.

Fig. 8 shows the normalized temperature distribution
calculated by FEM. Here, the normalized Temperature is
given by the following equation,

— (T_T;nin)
N (Tmax _Tmin)

where Ty is the normalized temperature, T, 1s the
minimum temperature, 7. 1S the maximum temperature and
T is the variable temperature in the human body.

©)

From calculated results, it was found that the most of the
electromagnetic heating energy radiated from the antenna was
absorbed by the surface of the knee, and it did not reach the
cartilage or joint cavity.
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Fig. 10 Normalized temperature distribution along Z-axis (comparing the
experimental result and the simulated result)

Fig. 9 shows an enlarged view of both results in the same
region of the knee. Both of the distributions showed that the
heating energy was concentrated in the hollow bone region
and did not reach the cartilage or deep region.

Fig. 10 shows the results of the comparison between the
normalized temperature increase profiles inside the knee of
the experimental results and FEM calculation results. The
maximum temperature in the FEM calculation results was at
the depth of 19.2 mm, while the maximum temperature in the
proposed experimental results was at the depth of 21.4 mm.
These two locations showed only a difference in distance of
less than 10%. Furthermore, both results show that, as
intended, the inside of the cartilage was not heated.

From these results, we confirmed that the microwave
diathermy system could not effectively heat the deep tissue in
the knee. Furthermore, we found that by using ultrasound
imaging techniques, we were able to calculate the temperature
increase distributions inside the human body. And developed
system can be able to measure the temperature in 0.5-1.0°C in
this situation by using robotic arm. This sensitivity is better
than the measurement system using CT or MRI.

IV. CONCLUSION

In this study, we evaluated the performance of a
microwave diathermy system currently used in clinics. To
evaluate the system’s performance, we compared
temperature increase distributions of our experimental
results and the calculated results the FEM.

From these results, it can be suggested that our robotic
arm guided ultrasound system effectively evaluated
temperature increase distributions inside the human body
during microwave diathermy treatment. Furthermore, we
confirmed that the microwave diathermy system was not
able to heat the deep tissue region of the knee.
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